

Submittal

TAG:

Condensing Unit Up to 13.4 SEER2

Cooling capacity: 24 – 60 kBTU/h

	APH3048E100A
UNIT DIMENSION AND WEIGHTS	
Height (in.)	33-3/16
Width (in.)	28
Depth (in.)	42-1/16
Net Weight (lbs.)	463

Specifications

	APH3048E100A		
	AITISOFELIOUA		
NOMINAL CAPACITY			
Cooling (BTU/h)	48,000		
Heating (BTU/h)	/		
ELECTRICAL DATA			
Voltage / Phase (60 Hz)	208/230 / 1		
Min. / Max. Voltage	187/253		
MCA	26.8		
МОР	40		
COMPRESSOR			
Туре	Scroll		
Stage	Single		
RLA	17.3		
LRA	108.0		
OUTDOOR COIL			
Туре	Tube & Fin		
Tube Size(O.D)	3/16		
OUTDOOR FAN MOTOR			
Motor Type	ECM		
Capacitor(uF)	/		
Horsepower (HP)	1/4		
Full Load Amps (FLA)	2.0		
Rated RPM	980		
INDOOR COIL			
Туре	Tube & Fin		
Tube Size(O.D)	9/32		
INDOOR BLOWER MOTOR			
Motor Type	PSC		
Capacitor(uF)	/		
Horsepower (HP)	3/4		
Full Load Amps (FLA)	2.9		
Rated RPM	1050		
REFRIGERATION SYSTEM			
Refrigerant Control	Orifice		
Refrigerant Charge (lbs oz.)	6-10		
OPERATION RANGE			
Cooling(°F)	55-115		
Heating(°F)	5-86		
SOUND POWER (DB)	80		

Airflow Data

Duct Application (208V)

Model	Motor		SCFM									
Model Motor Number Speed			External Static Pressure-Inches W.C.[kPa]									
Number	Speed		0[0]	0.1[.02]	0.2[.05]	0.3[.07]	0.4[.10]	0.5[.12]	0.6[.15]	0.7[.17]	0.8[.20]	
	Low-	SCFM	1545	1507	1463	1418	1366	1307	1239	/	/	
	Tap(1)	Watts	487	479	469	458	447	433	418	/	/	
	(Factory)	Amps	2.58	2.55	2.52	2.49	2.46	2.42	2.38	/	/	
	Mid- Tap(2)	SCFM	1740	1699	1654	1606	1551	1488	1414	1318	1200	
48		Watts	783	768	756	742	728	712	693	672	644	
		Amps	4.27	4.22	4.18	4.14	4.1	4.05	3.99	3.92	3.84	
	High- Tap(3)	SCFM	/	/	/	1800	1740	1671	1595	1499	1380	
		Watts	/	/	/	874	854	833	812	787	759	
		Amps	/	/	/	4.76	4.7	4.63	4.57	4.49	4.4	

Duct Application (230V)

Model	Motor		SCFM								
Number	Speed		External Static Pressure-Inches W.C.[kPa]								
			0[0]	0.1[.02]	0.2[.05]	0.3[.07]	0.4[.10]	0.5[.12]	0.6[.15]	0.7[.17]	0.8[.20]
	Low-	SCFM	1735	1701	1654	1608	1554	1495	1429	1340	/
	Tap(1)	Watts	579	573	561	545	527	510	469	465	/
	(Factory)	Amps	2.52	2.49	2.44	2.37	2.29	2.22	2.15	2.02	/
	Mid-	SCFM	/	/	/	1790	1730	1665	1591	1503	1384
48		Watts	/	/	/	658	642	614	592	566	533
	Tap(2)	Amps	/	/	/	2.86	2.79	2.67	2.57	2.46	2.32
	High-	SCFM	/	/	/	/	/	/	1761	1666	1548
		Watts	/	/	/	/	/	/	732	704	662
	Tap(3)	Amps	/	/	/	/	/	/	3.18	3.06	2.88

The above airflow data for reference only.

- * In any situation, the airflow of the unit should be in the range of 80% to 130% of 400CFM/Ton.
- The air distribution system has the greatest effect on airflow. The duct system is totally controlled by the contractor. For this reason, the contractor should use only industry-recognized procedures.
- Heat pump systems require a specified airflow. Each ton of cooling requires between 300 and 450 cubic feet of air per minute (CFM), or 400 CFM nominally.
- Duct design and construction should be carefully done. System performance can be lowered dramatically due to poor duct design.

- Air supply diffusers must be selected and located carefully. They must be sized and positioned to deliver treated air along the perimeter of the space. If they are too small for their intended airflow, they become noisy. If they are not located properly, they cause drafts. Return air grilles must be properly sized to carry air back to the blower. If they are too small, they also cause noise.
- The installers should balance the air distribution system to ensure proper quiet airflow to all rooms in the home. This ensures a comfortable living space.
- An air velocity meter or airflow hood can give a reading of system CFM.
- During installation, installer should select the air speed according to the actual setting static pressure.

Electric Heat Pressure Drop Tables (IN.W.C)

Large Cabinet: 42K, 48K, 60K

STATIC	STANDARD CFM (SCFM)									
	1500	1600	1700	1800	1900	2000	2100	2200		
5kW	0.1	0.1	0.1	0.1	0.15	0.15	0.15	0.15		
7.5kw	0.1	0.1	0.1	0.1	0.15	0.15	0.15	0.15		
10kW	0.1	0.1	0.15	0.15	0.15	0.15	0.15	0.15		
15kW	/	/	0.2	0.2	0.2	0.2	0.2	0.2		
20kW	/	/	0.2	0.2	0.2	0.2	0.2	0.25		

Electric Heat Kit Data

Capacity	Heater Circuit (without units)									
KBTU	Model	KW	Stages	Amps	MCA	Max Fuse Breaker Amps				
	EHK-05G	3.8/5	1	18.1/20.8	23/26	25/30				
	EHK-08G	5.6/7.5	1	27.1/31.3	34/40	35/40				
48	EHK-10G	7.5/10	1	36.1/41.7	46/53	50/60				
	EHK-15G	11.3/15	2	54.2/62.5	68/79	70/80				
	EHK-20G	15/20	2	72.3/83.4	91/105	100/110				

Features

- Quiet horizontal discharge.
- Power-painted galvanized steel cabinet.
- Electric heat kit available as a field-installed option: 5/8/10/15/20kW.
- · High-efficiency compressors operate smoothly, quietly, consistently.
- · Internal safeguards protect compressor against high and low pressure, coil temperature.
- · Copper tube/aluminum fil coil.
- · High efficiency ECM blower motor (not all models).
- · AHRI Certified and ETL listed.

Note: Product specifications change from time to time as product improvements and developments are released and may vary from those in this document. Tuttokool has a policy of continuous product and product data improvement and it reserves the right to change design and specification without notice.

